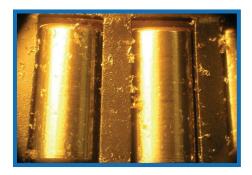
Failure Modes


Grooving

- Grooving occurs when hard contaminants enter the bearing and get wedged in the cage and cut grooves in the rollers.
- Particles can also get caught between rollers and cut grooves in the bearing races.
- The damage is permanent and will lead to early bearing failure.

Pitting and Contaminants

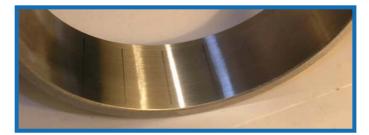
- Pitting is damage that is also caused by foreign material such as dirt or metal particles entering the bearing.
- The most likely source of these particles are improperly cleaned housings.
- Even light pitting may lead to eventual bearing failure. Caution should be taken to evaluate whether lightly damaged parts should be returned to service.

Excessive contaminants and resulting raceway pitting.

Excessive Abrasive Wear from Contaminants

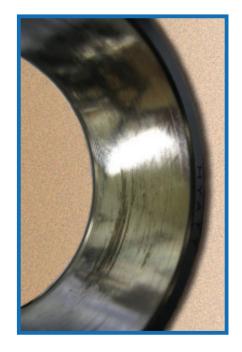
- Extremely contaminated environments will cause excessive wear to the point of wearing down roller ends as shown here. Bearing life is severely reduced in this situation.
- Abrasive wear occurs when a hard rough surface slides across a softer surface.
- Damage caused by lubricant-borne particles in rolling/sliding contacts can severely reduce the operational life of ball and roller bearings.
- Lubricant supplies frequently contain such contaminating particles, either generated from

within the machinery itself or incorporated into the fluid from the surroundings.


Etching from Moisture Contamination

 When water is allowed to enter the bearing assembly and mix with the system lubricants, a chemical reaction can cause surface etching as shown above.

Frictional Corrosion


- Small vibrations will cause the bearing rolling pathway surfaces to rub together when the bearing is not rotating, such as when an assembly with installed bearings are shipped.
- The rubbing eventually leads to surface oxidation and a failure initiation point.
- Properly installed bearings with correct clearance and lubrication can alleviate this.

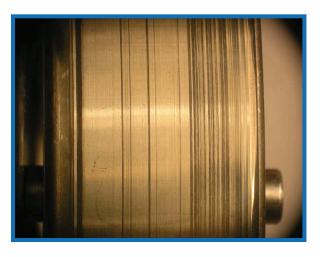
Operating Conditions

Misalignment

- Misalignment caused by installation forces the centerline of the inner bearing race (cone) to operate at a slight angle to the centerline of the outer race (cup).
- This causes the load to be unevenly distributed creating greater than expected stress at one end of the rolling surfaces.
- Eventually, this will lead to surface spalling and premature failure as shown.
- The unexpected forces caused by misalignment can extend outside of the bearing, influencing the bearing mating components and causing other unexpected and uneven wear. In the photos shown here, a misalignment condition has caused wear between the cone bore and shaft outer diameter and caused the bore to have a polished appearance.

Static Overload

- Static overload of a stationary bearing from either load or shock will produce true brinelling or permanent plastic deformation at the rolling element and raceway contact points.
- Excessive preload, improper installation, or improper handling can all cause this condition.
- This will lead to premature failure.

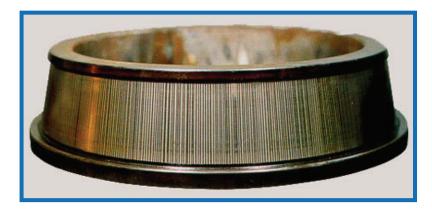


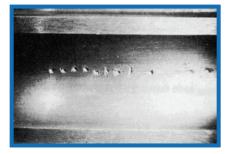
Outer Diameter Damage

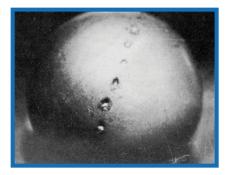
 In these photos, grooves and heavy wear on the outer diameter of the cup indicate that the cup was spinning inside the housing/hub. This condition is most often caused by improper fits or misalignment.

Effects of Lubrication Starvation

- Lack of lubrication in fully loaded bearings will cause prompt and severe failure. Improper maintenance, installation, and poor sealing are several root causes.
- In addition to the destruction of the roller separator pictured above, overheating due to high friction will affect all bearing components.







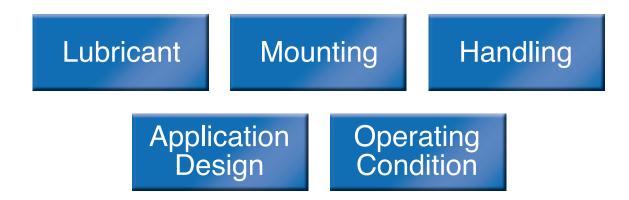
Effects of Electrical Current

- Due to small internal clearances in the bearing, electrical current can arc between component surfaces causing rolling surface pitting. This will eventually lead to failure.
- Proper grounding techniques should be employed to avoid current passing through bearings.

Fracture

• Excessive preload, high shock loads, poor handling and extreme thermal conditions can lead to component fracture.

Failure Analysis


Failure Modes

 ISO 15242:2004(E) is a comprehensive document on Bearing Failure Analysis. Almost all bearing failure modes can be classified into one of these six categories:

Failure Causes

 Almost all bearing failure causes can be classified into one of these five categories:

Lubricant Based Failure Causes

• All bearings need proper lubrication to function properly. Lubrication must be correctly selected, be applied to the correct quantity level, be clean, monitored, and maintained correctly.

	Insufficient Lubricant	Excessive Lubricant	Incorrect Viscosity	Inadequate Quality	Contamination
Increased Wear	\checkmark		\checkmark	\checkmark	\checkmark
Tracks					\checkmark
Scores					\checkmark
Material Smearing	\checkmark		\checkmark	\checkmark	
Scratches	\checkmark		\checkmark	\checkmark	
Hot Running	\checkmark	\checkmark	\checkmark	\checkmark	
Pitting	\checkmark		\checkmark	\checkmark	\checkmark
Spalling	\checkmark		\checkmark	\checkmark	\checkmark
Rust				\checkmark	\checkmark
Cage Fracture	\checkmark		\checkmark		
Indentations					\checkmark
Thermal Cracks	\checkmark		\checkmark	\checkmark	

Operating Condition Based Failure Causes

• Operating conditions must be carefully considered when choosing the proper bearing and determining the bearing's expected life.

	Excessive Speed	Excessive Load	Frequently Fluctuating Loads	Vibration	Passage of Electrical Current
Increased Wear	\checkmark	\checkmark	\checkmark	\checkmark	
Scores			\checkmark		
Material Smearing	\checkmark	\checkmark	\checkmark	\checkmark	
Fluting					\checkmark
Chatter Marks				\checkmark	
Hot Running	\checkmark	\checkmark			
Pitting	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Spalling	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fretting (Rust)				\checkmark	
Fracture Cracks		\checkmark		\checkmark	
Cage Fracture	\checkmark		\checkmark	\checkmark	
Indentations		\checkmark			
Thermal Cracks		\checkmark			

• Incorrect mounting practices can severely shorten bearing life

	Faulty Electrical Insulation	Incorrect Mounting	Incorrect Heating	Misalignment
Increased Wear			\checkmark	\checkmark
Scratches		\checkmark		\checkmark
Fluting	\checkmark			
Hot Running	\checkmark			
Pitting	\checkmark	\checkmark		\checkmark
Spalling	\checkmark	\checkmark		\checkmark
Electrical Craters	\checkmark			
Fracture Cracks		\checkmark		
Cage Fracture		\checkmark		
Deformation		\checkmark	\checkmark	\checkmark
Indentations		\checkmark		
Thermal Cracks			\checkmark	

	Undesirable preload	Impact	Inadequate fixing	Uneven seating Surface	Incorrect Seating fit
Increased Wear	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tracks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Smearing			\checkmark		
Hot Running	\checkmark				\checkmark
Pitting	\checkmark		\checkmark	\checkmark	\checkmark
Spalling	\checkmark		\checkmark	\checkmark	\checkmark
Fretting (rust)				\checkmark	\checkmark
Fracture Cracks	\checkmark		\checkmark	\checkmark	
Cage Fracture	\checkmark	\checkmark			
Deformation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Thermal Cracks	\checkmark		\checkmark		\checkmark

 Proper bearing selection, along with the components they are mounted to, will enhance bearing life.

	Incorrect Bearing Selection	Unsuitable Adjacent Components
Smearing	\checkmark	\checkmark
Scratches	\checkmark	\checkmark
Hot Running	\checkmark	\checkmark
Fretting (rust)	\checkmark	\checkmark
Fracture Crack	\checkmark	\checkmark
Cage Fracture	\checkmark	\checkmark
Spalling	\checkmark	\checkmark

Bearing Handling Based Failure Causes

• Bearing handling, storage, and transportation should follow proper guidelines to avoid rolling surface damage.

	Incorrect Bearing Storage	Vibration During Transportation
Scratches		\checkmark
Corrosion (rust)	\checkmark	
Fretting (rust)		\checkmark
Indentations		\checkmark